skip to main content


Search for: All records

Creators/Authors contains: "Yadav, Sneha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Introduction: Magnetopause reconnection is known to impact the dayside ionosphere by driving fast ionospheric flows, auroral transients, and high-density plasma structures named polar cap patches. However, most of the observed reconnection impact is limited to one hemisphere, and a question arises as to how symmetric the impact is between hemispheres. Methods: We address the question using interhemispheric observations of poleward moving radar auroral forms (PMRAFs), which are a “fossil” signature of magnetopause reconnection, during a geomagnetic storm. We are particularly interested in the temporal repetition and spatial structure of PMRAFs, which are directly affected by the temporal and spatial variation of magnetopause reconnection. PMRAFs are detected and traced using SuperDARN complemented by DMSP, Swarm, and GPS TEC measurements. Results: The results show that PMRAFs occurred repetitively on time scales of about 10 min. They were one-to-one related to pulsed ionospheric flows, and were collocated with polar cap patches embedded in a Tongue of Ionization. The temporal repetition of PMRAFs exhibited a remarkably high degree of correlation between hemispheres, indicating that PMRAFs were produced at a similar rate, or even in close synchronization, in the two hemispheres. However, the spatial structure exhibited significant hemispherical asymmetry. In the Northern Hemisphere, PMRAFs/patches had a dawn-dusk elongated cigar shape that extended >1,000 km, at times reaching >2,000 km, whereas in the Southern Hemisphere, PMRAFs/patches were 2–3 times shorter. Conclusion: The interesting symmetry and asymmetry of PMRAFs suggests that both magnetopause reconnection and local ionospheric conditions play important roles in determining the degree of symmetry of PMRAFs/patches. 
    more » « less
    Free, publicly-accessible full text available July 13, 2024
  2. Dynamic mesoscale flow structures move across the open field line regions of the polar caps and then enter the nightside plasma sheet where they can cause important space weather disturbances, such as streamers, substorms, and omega bands. The polar cap structures have long durations (apparently at least ∼1½ to 2 h), but their connections to disturbances have received little attention. Hence, it will be important to uncover what causes these flow enhancement channels, how they map to the magnetospheric and magnetosheath structures, and what controls their propagation across the polar cap and their dynamic effects after reaching the nightside auroral oval. The examples presented here use 630-nm auroral and radar observations and indicate that the motion of flow channels could be critical for determining when and where a particular disturbance within the nightside auroral oval will be triggered, and this could be included for full understanding of flow channel connections to disturbances. Also, it is important to determine how polar cap flow channels lead to flow channels within the auroral oval, i.e., the plasma sheet, and determine the conditions along nightside oval/plasma sheet field lines that interact with an incoming polar cap flow channel to cause a particular disturbance. It will also be interesting to consider the generality of geomagnetic disturbances being related to connections with incoming polar cap flow channels, including the location, time, and type of disturbances, and whether the duration and expansion of disturbances are related to flow channel duration and to multiple flow channels. 
    more » « less
    Free, publicly-accessible full text available April 27, 2024
  3. Abstract

    We report the first observations of the association between equatorward extending streamers and overshielding using the THEMIS all‐sky imagers and ground magnetometers. Because auroral streamers indicate plasma sheet flow bursts, these observations uncover the effect of flow bursts on overshielding. Results show that, in general, bright equatorward extended streamers were associated with an increase in equatorial electrojet (EEJ) on the nightside and a decrease in the dayside EEJ, indicating a striking correspondence between auroral streamers and overshielding conditions. Thus, the driving of overshielding at equatorial latitudes can be identified via bright equatorward extended streamers, indicating that flow bursts are an alternate means to discern the earthward injections that increase the region 2 field aligned currents and associated overshielding electric fields. Repetitive auroral streamers were associated with repetitive overshielding, resulting in a stepwise development of the dayside and nightside EEJ. The stepwise intensifications were also observed in the midlatitude positive bay and Pi2 pulsations. Our results could explain the occurrence of overshielding conditions at equatorial latitudes during substorms and nonsubstorm times without a northward turning of IMF‐Bz. As seen through streamers, the localized current structures (wedgelets) associated with flow bursts giving injection that leads to overshielding is titled northeast‐to‐southwest. Our results add a new element to the understanding of high‐to‐low latitude electrodynamical coupling by demonstrating the association between bright equatorward extended auroral streamers and enhanced shielding electric fields caused by earthward injections associated with flow bursts.

     
    more » « less
  4. Abstract

    The occurrence of St. Patrick's Day (17 March) geomagnetic storms during two different years (2013 and 2015) with similar solar flux levels but varying storm intensity provided an opportunity to compare and contrast the responses of the ionosphere‐thermosphere (IT) system to different levels of geomagnetic activity. The evolution of positive ionospheric storms at the southern polar stations Bharati (76.6°S MLAT) and Davis (76.2°S MLAT) and its causative connection to the solar wind driving mechanisms during these storms has been investigated in this paper. During the main phase of both the storms, significant enhancements in TEC and phase scintillation were observed in the magnetic noon/ midnight period at Bharati and Davis. The TEC in the midnight sector on 17 March 2015 was significantly higher compared to that on 17 March 2013, in line with the storm intensity. The TEC enhancements during both the storm events are associated with the formation of the storm‐enhanced densities (SEDs)/tongue of ionization (TOI). The strong and sustained magnetopause erosion led to the prevalence of stronger storm time electric fields (prompt penetration electric field (PPEF)/subauroral polarization streams (SAPS)) for long duration on 17 March 2015. This combined with the action of neutral winds at midlatitudes favored the formation of higher plasma densities in the regions of SED formation on this day. The same was weaker during the 17 March 2013 storm due to the fast fluctuating nature of interplanetary magnetic field (IMF)Bz. This study shows that the duration and extent of magnetopause erosion play an important role in the spatiotemporal evolution of the plasma density distribution in the high‐midlatitude ionosphere.

     
    more » « less